

NAME

Study Guide

Angles and Radian Measure

An angle of one complete revolution can be represented either by 360° or by 2π radians. Thus, the following formulas can be used to relate degree and radian measures.

	1 radian = $\frac{180}{\pi}$ degrees or about 57.3°
Conversion Formulas	1 degree = $\frac{\pi}{180}$ radians or about 0.017 radian

Example 1 a. Change 36° to radian measure in terms of π . b. Change $-\frac{17\pi}{3}$ radians to degree measure.

a.
$$36^{\circ} = 36^{\circ} \times \frac{\pi}{180^{\circ}}$$

= $\frac{\pi}{5}$
b. $-\frac{17\pi}{3} = -\frac{17\pi}{3} \times \frac{180^{\circ}}{\pi}$
= -1020°

Example 2 Evaluate $\sin \frac{3\pi}{4}$.

The reference angle for $\frac{3\pi}{4}$ is $\frac{\pi}{4}$. Since $\frac{\pi}{4} = 45^{\circ}$, the terminal side of the angle intersects the unit circle at a point with coordinates of $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Because the terminal side of $\frac{3\pi}{4}$ lies in Quadrant II, the *x*-coordinate is negative and the *y*-coordinate is positive. Therefore, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$.

Example 3 Given a central angle of 147° , find the length of its intercepted arc in a circle of radius 10 centimeters. Round to the nearest tenth. First convert the measure of the central angle from degrees to radians.

$$147^{\circ} = 147^{\circ} \times \frac{\pi}{180^{\circ}} \qquad 1 \text{ degree} = \frac{\pi}{180^{\circ}}$$
$$= \frac{49\pi}{60}$$

Then find the length of the arc.

 $s = r\theta$ Formula for the length of an arc $s = 10 \Big(rac{49\pi}{60} \Big)$ $r = 10, \ heta = rac{49\pi}{60}$ $s \approx 25.65634$

The length of the arc is about 25.7 cm.

	NAME		DATE	PERIOD			
6-1	Practice						
Angles and Radian Measure							
Change each degree measure to radian measure in terms							
of π. 1250°		2. 6°	3. -14	5°			
4. 870°		5. 18°	6. -82	20°			
Change each radian measure to degree measure. Round to the nearest tenth, if necessary.							
7. 4π	intii, ii necessai y	8. $\frac{13\pi}{30}$	9. -1				
10. $\frac{3\pi}{16}$		11. -2.56	12. $-\frac{7\pi}{9}$	-			
10			U				
Evolucto cost	overagion						
Evaluate each 13. $tan \frac{\pi}{4}$	-	14. $\cos \frac{3\pi}{2}$	15. sin -	$\frac{3\pi}{2}$			
1		-		-			

Given the measurement of a central angle, find the length of its intercepted arc in a circle of radius 10 centimeters.				
Round to the nearest tenth.				
19. $\frac{\pi}{6}$	20. $\frac{3\pi}{5}$	21. $\frac{\pi}{2}$		

Find the area of each sector, given its central angle θ and		
the radius of the circle. Round to the nearest tenth.		
22. $\theta = \frac{\pi}{6}, r = 14$	23. $\theta = \frac{7\pi}{4}, r = 4$	