Page 497: 17, 23, 37 Page 503: 13, 23, 37

Write the ordered pair that represents  $\overline{YZ}$ . Then find the magnitude of  $\overline{YZ}$ .

**17.** 
$$Y(5, 4), Z(0, -3)$$
  $\langle -5, -7 \rangle, \sqrt{74}$ 

Find an ordered pair to represent  $\overline{a}$  in each equation if  $\overline{b} = \langle 6, 3 \rangle$  and  $\overline{c} = \langle -4, 8 \rangle$ .

23. 
$$\overline{a} = \overline{b} + \overline{c}$$
 (2, 11)

Find the magnitude of each vector. Then write each vector as the sum of unit vectors.

**37.** 
$$\langle 2, -3 \rangle$$
  $\sqrt{13}, 2\vec{i} - 3\vec{j}$ 

Locate point B in space. Then find the magnitude of a vector from the origin to B.

**13**. 
$$B(7, 2, 4)$$
  $\sqrt{69}$ 

Find an ordered triple to represent  $\vec{u}$  in each equation if  $\vec{v} = \langle 4, -3, 5 \rangle$ ,  $\vec{w} = \langle 2, 6, -1 \rangle$ , and  $\vec{z} = \langle 3, 0, 4 \rangle$ .

23. 
$$\vec{\mathbf{u}} = \frac{1}{2}\vec{\mathbf{v}} - \vec{\mathbf{w}} + 2\vec{\mathbf{z}} \quad \left\langle \mathbf{6}, -7\frac{1}{2}, 11\frac{1}{2} \right\rangle$$

**37. Physics** An object is in equilibrium if the magnitude of the resultant force on it is zero. Two forces on an object are represented by  $\langle 3, -2, 4 \rangle$  and  $\langle 6, 2, 5 \rangle$ . Find a third vector that will place the object in equilibrium.  $\langle -9, 0, -9 \rangle$